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Abstract. The thermofield representation of a thermal state by a pure-state wavefunction 
in a doubled Hilbert space is generalised to arbitrary mixed and pure states. We employ 
a Liouville space formalism to investigate the connection between these generalised 
thermofield wavefunctions and a generalised thermofield state vector in Liouville space 
which is valid for all cases of the quantum density operator. The system dynamics in the 
Schrodinger and Heisenberg pictures are discussed. 

Quantum mechanical systems in mixed states are conventionally represented by density 
matrices and their evolution described by master equations. The so-called thermofield 
formalism (Takahashi and Umezawa 1975, Umezawa et al 1982, Barnett and Knight 
1985) allows us to represent thermal mixed states by pure states in an enlarged Hilbert 
space consisting of the Hilbert space of the system and a duplicate 'fictitious' Hilbert 
space. In this paper we demonstrate the generalisation of the Takahashi-Umezawa 
thermofield formalism to the pure-state representation of arbitrary states of any 
quantum system. We demonstrate the connections between density matrix, Liouville 
space (Fiutak and Van Kranendonk 1962, Cohen-Tannoudji 1975, Dalton 1982) and 
thermofield representations of quantum states. We also discuss the dynamics in these 
representations. 

The thermofield vacuum state representing a quantum mechanical system in a 
thermal state is given by the wavefunction 

lo(~))=z;~j* C e x ~ ( - ~ ~ n / 2 ) l n ,  6 )  (1) 
n 

where Z (  p )  is the partition function and /3 is the inverse temperature p = ( k g T ) - ' .  
The quantum system has a Hamiltonian H and orthogonal energy states In) with energy 
eigenvalues E,  

H l n )  = Enin). (2) 

f i l i i)  = E,l6). (3 1 
Quantities associated with the duplicate Hilbert space are denoted by a tilde 

We see that for an operator A acting only in the original space, the thermofield vacuum 
state expectation value is 

(O( p)lAlO( p )) = Z-'( p )  C exp[-P(E, + E m ) / 2 1 ( n ,  GlAlm, 6) 
n m  

= Z - ' ( P )  c exp(-PE,)(nlAln). 
n 
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(4) 
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This is the thermal state expectation value usually associated with mixed-state density 
matrices (see, for example, ter Haar 1961). The orthogonality of the energy eigenstates 
In') is responsible for destroying the off -diagonal density matrix elements usually 
associated with pure-state expectation values. 

To generalise the thermofield representation to arbitrary states of any quantum 
system we require a pure-state wavefunction in a doubled Hilbert space 

ie)=C e,,Ii,J. ( 5 )  
rJ 

This wavefunction must have the property that the expectation value of an operator 
A, acting only in the original space, is equal to that obtained when using a density 
matrix p 

Tr{pA} =(elAle).  (6) 

In the discussion of the existence of (e) and of its properties we find it convenient to 
employ the Liouville space formalism. There is a natural connection between density 
matrix, Liouville space and thermofield formalisms-the Liouville space formalism 
being intermediate between the density matrix and thermofield descriptions. 

In  Liouville space, each linear operator A corresponds to a vector /A)) Particular 
operators in state space are associated with Liouville space vectors as follows: 

A - 1.4)) ( 7 a )  

For an orthonormal basis ( i )  in state space we have 

M = C  lit)) (8a) 

A = C  Avli)(jl+-+I ~ ~ ~ 1 ~ 7 ) .  ( 8 b )  

I 

'J rJ 

The scalar product in Liouville space is defined via association with the trace operation 
in state space 

((BIA))= Tr{BtA}. (9) 
Linear operators in Liouville space (superoperators) are defined by their action on the 
Liouville space vectors. As an example of a superoperator consider the operator relation 

B = F,AFi.  (10) 
We define the superoperator 

F =  F,  x F; 

and its action on a Liouville space vector 

A particularly important superoperator is the Liouville superoperator which is defined 
in terms of the Hermitian Hamiltonian operator in state space ( H )  

2 3 H x 1 - 1 x H. (13)  
A more complete discussion of Liouville space is given by Dalton (1982, appendix 1 ) .  
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We proceed by introducing the Liouville representation of the thermofield vacuum 
state (which we will later identify as a specific case of the generalised thermofield state 
vector /e ) ) )  

I o ( P ) ) ) =  z - " ~ ( P )  C exp(-PEn/2)lnn')). (14) 

Consider a Hilbert space operator A and the related superoperator in Liouville space 
R 

A, = A x 1 .  (15 )  

The expectation value of A, in the Liouville thermofield vacuum state is 

((O(P)IA x 11O(P))) 

= Z - ' ( p )  e x p [ - p ( E R - E m ) / 2 ] ( ( n n ' I A x  l lmm')) 
n m  

=z- ' (P) C exP(-PE,)(nlA/n) 
n 

= ((P 14) (16) 

=(A) .  (17)  
Thus, both ((O( p)IA x l l O (  p ) ) )  and ( (p I A)) give the thermal-state expectation value of 
the operator A. In the case where A is Hermitian we also have ( (p I A)) =((A 1 p)).  The 
expectation values Tr{pA}, ( (p IA)), ((O( p)IA x llO( p ) ) )  and (0( p)lAlO( p ) )  are identical. 
Moreover, because A is an arbitrary operator, p, Ip)), IO( p)))  and IO( p ) )  all provide a 
complete (and equivalent) description of the thermal state. 

The Liouville space vector may be represented as a pure state in a doubled Hilbert 
space with a double set of operators (Crawford 1958, Schmutz 1978, Arimitsu and 
Umezawa 1985) if we make the identifications 

ln"))-ln)l$ ( 1 8 0 )  

A x l e A  

1 x A - A i .  

We now consider whether the relation (16) can be generalised to arbitrary density 
matrices p. That is, given a density matrix p with Liouville space representation 

IP))= C Pnmln"))  (19) 
n, m 

we need to show that there is a Liouville space vector representing a generalised 
thermofield state 

le))=C @,,le+)) (20) 
'J 

such that 

( A )  = ((P 14) 
=((BIAx 116)). 

Evaluating ((elA x 116)) we find 
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The expectation value of A calculated from the density matrix p is 

((PIA))= C p E m A n m .  
n. m 

Since A is arbitrary, equality between expressions (22) and (23) requires that 

P n m  = enje: , .  
J 

In matrix form, this condition reduces to 

= B e + .  

Factorisation of the density matrix into a product of two square roots of the density 
matrix has been considered before by Crawford (1958) and Schmutz (1978). We shall 
see that the Liouville description ties together the descriptions afforded by the square 
root of the density matrix and the pure state in an expanded Hilbert space. We now 
have to prove that the density matrix can always be factorised in the form of equation 
(25). The density operator is Hermitian, and can therefore be diagonalised in the form 

where PA is the projector l A ) ( A \  and \ A )  are the orthogonal eigenstates of p with 
eigenvalues pA obeying the condition 

0 s  p h  s 1 .  (27) 

Using the orthonormality of the states IA)  the projectors satisfy PAP, = 8A,PA. We can 
write the density operator in the factorised form 

= eo'. (28) 

This result is independent of the diagonal basis used to derive it. Taking matrix 
elements in an arbitrary basis In) yields the required result, equation (24). Note that 
the phase factors 4A are undetermined and therefore 0 is not unique. Thus the density 
matrix can always be factorised into a product of a matrix with its Hermitian conjugate. 
Therefore we can always find a Liouville space vector le)) to represent the state of a 
quantum mechanical system associated with the density matrix p. That is, we can write 
the expectation value of any operator acting in the system Hilbert space as 

( A )  = ((P 14) 
= ( ( 8 / A x  lie)). (29) 

Making the identifications (18) we can associate 16)) with a pure-state wavefunction 
in a doubled Hilbert space 

The Hermitian character of the density matrix implies the existence of the equivalent 
representations p, lp)), 10)) and 10) for an arbitrary state of any quantum system. 
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A special case of this relation (29) occurs for a pure-state density matrix, where p 
can be written in the form 

P = I v w I  (31) 

6 = e" l*M (32) 

on,,, = eimc,c*, (33) 

le)) = e"c,,c*,(nm+)) = ei+l I$)($[)). (34) 

so that I$) is an  eigenvector of p with eigenvalue 1 .  The corresponding 6 is therefore 

so that in an  arbitrary basis In) we have 

with c, = ( n  I $) the expansion coefficients for a pure state I+). Thus 

n. m 

In the Schrodinger picture, the density matrix evolves according to the equation 
of motion 

ih  d p / d t  = [ H ,  p ] .  (35) 
In Liouville space, this equation becomes (Fiutak and Van Kranendonk 1962, Cohen- 
Tannoudji 1975, Dalton 1982) 

ih(dldt)lp)) = TIP)). (36) 
Integrating the density matrix equation of motion (35) we find 

p ( t )  = u ( t ) d o ) u ' ( t )  

= U ( t ) e(o) U '( t ) U( t )  e'(o)u '( t ) (37) 
where u ( t )=exp( - iHt /h )  is the unitary time evolution operator and  we have used 
the density matrix factorisation (28). From equation (37) we see that we can choose 
the density matrix factors such that at time t 

e ( t )  = u ( t ) e ( o ) u ' ( t ) .  (38)  

i h  d6 /d t  = [ H ,  e ] .  (39) 
A similar equation of motion has been derived for the square root of the density matrix 
by Crawford (1958) and Schmutz (1978). In Liouville space, equation (39) becomes 

Differentiating this equation we find the equation of motion for 0 

ih(d/dt)(e))  = 316)). (40) 
Making the identifications (18), we can associate the Liouville space vector 10)) with 
a pure-state wavefunction in a doubled Hilbert space. With this identification, the 
Liouville superoperator becomes the Hamiltonian for the pure-state thermofield 
wavefunction 

T - H - Z i  (41) 
where we have used the fact that the Hamiltonian is an  Hermitian operator. This is 
the Hamiltonian associated with the free field evolution of the thermofield vacuum 
state (Takahashi and Umezawa 1975, Umezawa er al 1982, Barnett and  Knight 1985). 
Here we see the significance of the form adopted by Takahashi and  Umezawa (1975) 
for the thermofield free field Hamiltonian. The real Hamiltonian ( H )  is associated 
with the ket dynamics of the density matrix while the fictitious Hamiltonian (-g) is 
associated with the bra dynamics. Equivalently, H ( - f i )  is associated with H x 
1 (  -1  x H )  in the Liouville superoperator 9. 
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In the Heisenberg picture p and 6 are independent of time and an operator A 
satisfies the equation 

ih(d /d l )A = [A, HI. (42) 

Thus in Liouville space 

ih(d/dt)lA)) = -9lA)). (43) 

In the thermofield representation, where operators act in either the real or fictitious 
spaces (Takahashi and Umezawa 1985, Umezawa et a1 1982) or in both spaces (Barnett 
and Knight 1985), the Heisenberg equation of motion for an arbitrary operator A is 

ih dA/dt  = [ A ,  H -I?]. (44) 

The mean value of a physical quantity (A) is, of course, the same in the Schrodinger 
and Heisenberg pictures for each of the formalisms discussed here. 

In conclusion, we illustrate our results with two simple examples. Our first example 
is the well known case of a simple harmonic oscillator in a thermal (thermofield) state 
(Takahashi and Umezawa 1975, Umezawa et al 1982, Barnett and Knight 1985). The 
thermal density matrix may be written as (ter Haar 1961) 

Pth = z-'(P) exp(-PH) (45) 

H = h w a ' a .  (46) 

where H is the free Hamiltonian 

The evolution of the density matrix is governed by equation (35). The Liouville space 
equation for the generalised thermofield state vector 16)) is 

ifi(d/dr)/6)) = 316)). (47) 

Making the identifications (18) we arrive at the following form for the pure-state 
thermofield vacuum wavefunction: 

IO(P))=Z-"*(P) C exp(-~nhw/2)  exp(i4,)ln, i). (48) 
n 

Setting the arbitrary phases c#J,, to zero we arrive at the form of the thermofield vacuum 
state for a simple harmonic oscillator 

10(p))  = z - " ~ ( P )  exp[exp(-phw/2)a'a"1~0,6) (49) 

IO( PI)) = z-"*( p )  exp[exp(-~fiw/2)a+ x a]l00+)). 

which we identify with the corresponding Liouville space expression 

(50) 

Our second example is the state of a two-level quantum system which, for simplicity, 
we take to have equal probability of being in the excited state I+) or de-excited state 
I-). In matrix form, the density matrix has the form 

If C = t ,  the system is in a pure superposition state of I+) and I - ) .  If C = 0, the system 
is in a statistical mixture of I + )  and I-). Values of C that are intermediate between 
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0 and f are also possible and  describe the existence of partial coherence between the 
levels. The expectation value of an operator A with matrix representation 

where 

0 =t[(t+c)"'+(t-c)"'] 
6=f [ ( f+C)"* - ( t -C)" ' ]  

provides an equivalent representation of the state, for 

(BIAlO)=$A,++ C e"A+-+ C e-"A_++;A_-. 

le)) = ai++-))+ 6 b e'*/-+-))+ ai---)). ( 5 8 )  

( 5 7 )  

We can identify the thermofield wavefunction 10) with the Liouville space expression 

In this paper we have generalised the thermofield formalism to the representation 
of arbitrary states of any quantum system. We have shown that all quantum states 
may be represented by a wavefunction in a doubled Hilbert space. The density matrix 
p ,  its Liouville space representation ( p ) ) ,  the thermofield wavefunction 10) and its 
Liouville space representation 1 e)) form equivalent representations of a state. We have 
demonstrated the natural connection between the density matrix and  thermofield 
representations by employing the Liouville space formalism. In particular we have 
demonstrated the relationship between the Liouville superoperator and the Hamiltonian 
for the generalised thermofield wavefunction. We have also discussed the system 
dynamics in the Schrodinger and Heisenberg pictures. 

Acknowledgments 

We thank P L Knight for discussions and  for his encouragement. We also thank S 
Tarzi for drawing our attention to an error in the original manuscript. SMB thanks 
the Science and Engineering Research Council for the award of a postdoctoral fellow- 
ship. BJD thanks the British Council for research support. 

References 

Arimitsu T and Umezawa H 1985 h o g .  f i e o r .  fhys. 75 429 
Barnett S M and Knight P L 1985 J.  Opr. Soc. Am. B 2 467 
Cohen-Tannoudji C 1975 Cours de Physique Aromique et Mo/eculaire (Paris: College de France) 
Crawford J A 1958 Nuavo Cimenro 10 698 



418 S M Barnett and B J Dalton 

Dalton B J 1982 J.  fhys. A: M a t h .  G e n .  15 2157 
Fiutak J and Van Kranendonk J 1962 C a n .  J.  fhys. 40 1085 
Schmutz M 1978 Z. f h y s .  B 30 97 
Takahashi Y and Umezawa H 1975 Col/. fhenom.  2 55 
ter Haar D 1961 Rep. frog. fhys. 24 304 
Umezawa H,  Matsumoto H and Tachiki M 1982 Thermo Field Dynamics  a n d  Condensed States (Amsterdam: 

North-Holland) 


